<« rednhat | ¢JBoss

@ @ by Red Hat

JSR-299: Contexts and

Dependency Injection for Java EE

Dan Allen
Senior Software Engineer, RedHat

What JSR-299 provides

A powerful set of new services for Java EE components

Life-cycle management of stateful components bound to
well-defined contexts

A type-safe approach to dependency injection
Bean names to support Unified EL integration
A web conversation context

Interceptors decoupled from bean class

An event notification model

A complete SPI that allows portable extensions to
Integrate cleanly with the Java EE environment

The big picture

* Fills a major hole in the
Java EE platform

» A catalyst for emerging
Java EE specs

» Excels at solving stated
goal

—
- i
’m

W AT A A AT A e
i .

J E.Effﬁ* & ‘rlr l*"-ﬂ"'lq '."."L j
%-t}' ' E’n e _”- T) I,. : B 28

Vel K e ek 1
f ¥ | o
: L 'l aall .'I .|:, ‘- | ‘!.]
f it R R

Stated goal

Transactional tier Web tier
(EJB) (JSF)

Going beyond Seam

JSF-EJB integration problem still needed to be solved

Solve at platform level
Get an EG involved

Buy-in from broader Java EE community
Formulate a better, more robust design

Your bean is my bean

Everyone trying to solve the same problem
JSF, EJB, CDI (JSR-299), Seam, Spring, Guice, etc.
Need a “unified bean definition”

Can build from there

Managed bean

Common bean definition

Life cycle of instance
managed by container Managed bean

Basic set of services

Resource injection

Life-cycle callbacks

JSF EJB CDI
Interceptors

Foundation on which
other specs can build

Why injection?

Injection Is the weakest aspect of Java EE

EXxisting annotations pertain to specific components
@EJB
@PersistenceContext / @PersistenceUnit

@Resource (e.qg., DataSource, UserTransaction)
Third-party solutions rely on name-based injection

Not type-safe

Fragile

Requires special tooling to validate

Leverage and extend Java’s type system

JSR-299 introduces creative use of annotations
Annotations considered part of type
Comprehensive generics support
Why augment type?
Can’t always rely on class extension (e.g., primitives)

Avoid creating hard dependency between client and
Implementation

Don’t rely on weak association of field => bean name
Validation can be done at startup

JSR-299 theme

Loose coupling...

10

@InterceptorBinding

@Inject

@Qualifier

@Observes

@Produces @wishList
List<Product> getWishList()

Event<Order>

@UserDatabase EntityManager

...with strong typing

Loose coupling

Decouple server and client

Using well-defined types and “qualifiers”
Allows server implementation to vary

Decouple life cycle of collaborating components

Automatic contextual life cycle management
Stateful components interact like services

Decouple orthogonal concerns (AOP)

Interceptors
Decorators

Decouple message producer from message consumer

Events ‘

Strong typing

Eliminate reliance on string-based names
Compiler can detect typing errors

No special authoring tools required for code completion
Casting virtually eliminated

Semantic code errors detected at application startup
Tooling can detect ambiguous dependencies

12

What can be injected?

Defined by the specification

Almost any plain Java class (managed beans)
EJB session beans
Objects returned by producer methods or fields

Java EE resources (e.g., Datasource, UserTransaction)
Persistence units and persistence contexts

Web service references

Remote EJB references

Open book

SPI allows third-party frameworks to introduce
additional injectable objects

13

CDI bean

14

Set of bean types (non-empty)
Set of qualifiers (non-empty)
Scope

Bean EL name (optional)

Set of interceptor bindings

An Implementation

Bean services with CDI

@ManagedBean annotation not required (implicit)
Transparent create/destroy and scoping of instance
Type-safe resolution at injection or lookup
Name-based resolution when used in EL expression
Life cycle callbacks

Method interception and decoration

Event notification

15

Welcome to CDI (managed bean version)

public class Welcome {
public String buildPhrase(String city) {
return "wWelcome to " + city + "I";
h

}

When is a bean recognized?
/META-INF/beans.xml must be in same classpath entry

16

Welcome to CDI (session bean version)

public
@Stateless
class WelcomeBean implements Welcome {
public String buildPhrase(String city) {
return "Welcome to " + city + "!'";
h

}

17

A simple client: field injection

public class Greeter {
@InjecteWelcome welcome;

public void welcome() { @Current annotation implied
System.out.println(
welcome.buildPhrase("Mountain View'"));

18

A simple client: constructor injection

public class Greeter { :
Welcome welcome; Designates the constructor

CDI should invoke

@Inject

public Greeter(Welcome welcome) {
this.welcome = welcome

}

public void welcomeVisitors() {
System.out.println(
welcome.buildPhrase("Mountain View"));

19

A simple client: initializer injection

public class Greeter { : T
wWelcome welcome: Designates the initializer

method CDI should invoke

@Inject

void 1init(Welcome welcome) {
this.welcome = welcome

¥

public void welcomeVisitors() {
System.out.println(
welcome.buildPhrase("Mountain View"));

20

Multiple implementations

Two scenarios:

Multiple implementations of same interface
One implementation extends another

public class TranslatingWelcome extends Welcome {
@Inject GoogleTranslator translator,
public String buildPhrase(String city) {

return translator.translate(
"Welcome to " + city + "!");

Which implementation should be selected for injection?

\)

Qualifier

An annotation associated with a type that is satisfied by

some implementations of the type, but not necessatrily by
others.

Used to resolve a implementation variant of an API at an
Injection or lookup point.

22

Defining a qualifier

A qualifier is an annotation

public

@Qualifier

@Retention(RUNTIME)

@Target ({TYPE, METHOD, FIELD, PARAMETER})

@interface Translating {}

23

Qualifying an implementation

Add gqualifier annotation to make type more specific
public
@Translating
class TranslatingwWelcome extends Welcome {

@Inject GoogleTranslator translator;

public String buildPhrase(String city) {

return translator.translate(
"Welcome to " + city + "!");

Resolves ambiguity at injection point

There can never been an ambiguity when resolving!

24

S

Using a specific implementation

25

Must request to use qualified implementation explicitly

Otherwise you get ungualified implementation

public class Greeter {

Welcome welcome; No reference to implementation class!
@Inject

void 1init(@Translating Welcome welcome) {
this.welcome = welcome
¥

public void welcomeVisitors() {
System.out.println(
welcome.buildPhrase("Mountain View"));

Alternative bean

Swap replacement implementation per deployment
Replaces bean and its producer methods and fields

Disabled by default
Must be activated in /IMETA-INF/beans.xml

Put simply: an override

26

Defining an alternative

public
@Alternative
@Specializes
class TranslatingWelcome extends Welcome {

@Inject GoogleTranslator translator;
public String buildPhrase(String city) {

return translator.translate(
"Welcome to " + city + "!'");

27

Substituting the alternative

Implementation activated using deployment-specific
IMETA-INF/beans.xml resource
<beans>
<alternatives>
<class>com.acme.TranslatingWelcome</class>

</alternatives>
</beans>

Could also enable alternative by introducing and
activating an intermediate annotation

28

Assigning a bean name

public
@Named("greeter")
class Greeter {

Same as default name when
Welcome welcome;

no annotation value specified

@Inject

public Greeter(Welcome welcome) {
this.welcome = welcome

3

public void welcomeVisitors() {
System.out.println(
welcome.buildPhrase("Mountain View'"));

29

30

Assigning a bean name

public

@Named

class Greeter {
Welcome welcome;

@Inject

public Greeter(Welcome welcome) {
this.welcome = welcome

h

public void welcomeVisitors() {
System.out.println(

welcome.buildPhrase("Mountain View'"));

Collapsing layers

Use the bean directly in the JSF view

<h:form>
<h:commandButton value="Welcome visitors"
action="#{greeter.welcomeVisitors}"/>

</h:form>

But we still need the bean to be stored in a scope

31

A stateful bean

Declare bean to be saved for duration of request

public

@RequestScoped

@Named('"greeter")

class Greeter {
Welcome welcome;
private String city;

@Inject public Greeter(Welcome welcome) {
this.welcome = welcome
h
public String getCity() { return city; }
public void setCity(String city) { this.city = city; }

public void welcomeVisitors() {
System.out.println(welcome.buildPhrase(city));
}

2)

Collapsing layers with state management

Now it’s possible for bean to hold state

<h:form>
<h:inputText value="#{greeter.city}"/>
<h:commandButton value="Welcome visitors"
action="#{greeter.welcomeVisitors}"/>
</h:form>

Satisfies initial goal of integrating JSF and EJB
Except in this case, it extends to plain managed beans

33

Scope types and contexts

Absence of scope - @Dependent

Bound to life cycle of bean holding reference to it
Servlet scopes

@ApplicationScoped

@RequestScoped

@SessionScoped
JSF-specific scope

@ConversationScoped
Custom scopes

Define scope type annotation
y Implement context API

Scope transparency

Scopes are not visible to client

No coupling between scope and use of type
Scoped beans are proxied for thread safety

35

Scoping a collaborating bean

public
@SessionScoped
class Profile {
private Identity identity;

public void register() {

identity = ..
h

public Identity getIdentity() {
return identity;
}

4

}

36

Collaboration between stateful beans

public
@RequestScoped @Named
class Greeter {

Welcome welcome; No awareness of scope
private String city;

@Inject

public Greeter(Welcome welcome, Profile profile) {
this.welcome = welcome

¥

public void welcomeVisitors() {
System.out.println(

welcome.buildPhrase(profile.getIdentity(), city));

.)

Conversation context

Request <= Conversation << Session

77777777777777777 q

Boundaries demarcated by application |

Optimistic transactioni#

Conversation-scoped persistence context
No fear of exceptions on lazy fetch operations

38

39

Controlling the conversation

public
@ConversationScoped
class BookingAgent {

@Inject @BookingDatabase EntityManager em;
@Inject Conversation conversation;

private Hotel selectedHotel;
private Booking booking;

public void select(Hotel hotel) {

selectedHotel = em.find(Hotel.class, hotel.getId());
conversation.begin();

}

Controlling the conversation

public boolean confirm() {
if (!isvalid()) {
return false;
}

em.persist(booking);
conversation.end();
return true;

40

Producer method

A method whose return value is a source of injectable
objects.

Used for:
Types which you cannot modify

Runtime selection of a bean instance

When you need to do extra and/or conditional setup of a
bean instance

Roughly equivalent to Seam’s @Factory annotation

41

Producer method examples

@Produces
public PaymentProcessor getPaymentProcessor (
@Synchronous PaymentProcessor sync,
@Asynchronous PaymentProcessor async) {
return isSynchronous() ? sync : async;

}

@Produces @SessionScoped @wWishList
public List<Product> getWishList() { ... }

42

Disposal method

Used for cleaning up after a producer method

Matched using type-safe resolution algorithm
Called when produced bean goes out of scope

public class UserRepositoryManager {
@Produces @UserRepository

EntityManager create(EntityManagerFactory emf) {
return emf.createEntityManager();
h

void close(@Disposes @UserRepository EntityManager em) {
em.close();
h

}

s)

Bridging Java EE resources

Use producer field to set up Java EE resource for type-
safe resolution

public

@Stateless

class UserEntityManagerFactory {
@Produces @UserDatabase
@PersistenceUnit{unitName = "userDatabase")
EntityManagerFactory-emf;

¥

public

@Stateless

class PricesTopic {
@Produces @Prices
@Resourceg¢name = "java:global/env/jms/Prices")
Topic pricesTopic;

Java EE resource annotations

}

Java EE 6 global JNDI name

44

Injecting resource in type-safe way

String-based resource names are hidden

public class UserManager {
@Inject @UserDatabase EntityManagerFactory emf;

}

public class StockDisplay {
@Inject @Prices Topic pricesTopic;

45

Promoting state

Producer methods can be used to promote state of a
bean as an injectable object

public

@RequestScoped

class Profile {
private Identity identity;

public void register() {

identity = ...; Could also declare
} / qualifiers and/or EL name
@Produces @SessionScoped

public Identity getIdentity() {
return identity;
3

}

46

Using promoted state

public
@RequestScoped @Named
class Greeter {

Welcome welcome; No awareness of scope
private String city;

@Inject

public Greeter(Welcome welcome, Identity identity) {
this.welcome = welcome
h

public void welcomeVisitors() {
System.out.println(
welcome.buildPhrase(identity, city));

a7

Rethinking interceptors

Interceptors bound directly to component in Java EE 5
@Interceptors annotation on bean type
What's the problem?

Should not be coupled to implementation
Requires level of indirection
Should be deployment-specific

Tests vs production
Opt-in best strategy for enabling

Ordering should be defined centrally

48

Interceptor wiring in JSR-299 (1)

Define an interceptor binding type

public
@InterceptorBinding
@Retention(RUNTIME)
@Target({TYPE, METHOD})
@interface Secure {}

49

Interceptor wiring in JSR-299 (2)

Marking the interceptor implementation

public

@Secure

@Interceptor

class SecurityInterceptor {

@AroundInvoke
public Object aroundInvoke(InvocationContext ctx)

throws Exception {
// enforce security
ctx.proceed();

}

50

Interceptor wiring in JSR-299 (3)

Applying interceptor to class with proper semantics

public
@Secure
class AccountManager {

public boolean transferFunds(Account a, Account b) {

¥

51

Interceptor wiring in JSR-299 (4)

Applying interceptor to method with proper semantics

public class AccountManager {
public

@Secure
boolean transferFunds(Account a, Account b) {

¥

52

Multiple interceptors

Application developer only worries about relevance

public
@Transactional
class AccountManager {

public

@Secure
boolean transferFunds(Account a, Account b) {

}

53

Enabling and ordering interceptors

Interceptors referenced by binding type
Specify binding type in /IMETA-INF/beans.xml to activate

<beans>
<interceptors>
<class>com.acme.SecurityInterceptor</class>
<class>com.acme.TransactionInterceptor</class> |
</interceptors>
</beans>

Interceptors applied in order listed

54

Composite interceptor bindings

Interceptor binding types can be meta-annotations

public

@Secure]

@InterceptorBinding Order does not matter
@Retention(RUNTIME)

@Target(TYPE)

@interface BusinessOperation {}

55

Multiple interceptors (but you won’t know it)

Interceptors inherited from composite binding types

public
@BusinessOperation
class AccountManager {

public boolean transferFunds(Account a, Account b) {

¥

56

Wrap up annotations using stereotypes

Common architectural patterns — recurring roles

A stereotype packages:
A default scope
A set of interceptor bindings
The ability to that beans are named
The ability to specify that beans are alternatives

57

Annotation jam

Without stereotypes, annotations pile up

public

@Secure

@Transactional
@RequestScoped

@Named

class AccountManager {

public boolean transferFunds(Account a, Account b) {

}

58

Defining a stereotype

Stereotypes are annotations that group annotations

public

@Secure

@Transactional

@RequestScoped

@Named

@Stereotype

@Retention(RUNTIME)
@Target(TYPE)

@interface BusinessComponent {}

59

Using a stereotype

Stereotypes give a clear picture, keep things simple

public
@BusinessComponent
class AccountManager {

public boolean transferFunds(Account a, Account b) {

¥

60

Events

Completely decouples action and reactions

Observers can use selectors to tune which event
notifications are received

Events can be observed immediately, at end of
transaction or asynchronously

61

Firing an event Event instance with

type-safe payload

public class GroundController {
@Inject @Landing Event<Flight> flightLanding;

public void clearForLanding(String flightNum) {
flightLanding.fire(new Flight(flightNum));
h

}

62

An event observer

Takes event API type with

public class GateServices { additional binding type
public void onIncomingFlight(
@Observes @Landing Flight flight,
Greeter greeter,
CateringService cateringService) {
Gate gate = ...;
flight.setGate(gate);
cateringService.dispatch(gate);
greeter.welcomeVisitors();

} Additional parameters are

Injected by the container

63

Summary

JSR-299 satisfies original goal to integrate JSF and EJB
Managed bean specification emerged from JSR-299
More problems needed to be solved

Robust dependency injection model
Further loose-coupling with events
Extensive SPI to integrate third-party with Java EE

JSR-299 offers loose coupling with strong typing

64

JSR-299 status

Conflict with JSR-330 resolved

Proposed final draft published

TCK nearly complete

Send feedback to jsr-299-comments@jcp.org
http://jcp.org/en/jsr/detail?1d=299

65

66

Web Beans

JSR-299 reference implementation
Developed by Red Hat and community

Feature complete (for second public draft)
Look for CR1 ~ JBoss World 2009
http://[seamframework.org/Download

<« rednat | ¢JBoss

@ @ by Red Hat

Q&A

http://in.relation.to/Bloggers/Dan
http://[seamframework.org/\WebBeans

Dan Allen
Senior Software Engineer, RedHat

