
Web Beans

Pete Muir

JBoss, a division of Red Hat

http://in.relation.to/Bloggers/Pete

pete.muir@jboss.org

1

http://in.relation.to/Bloggers/Pete
http://in.relation.to/Bloggers/Pete
mailto:pete.muir@jboss.org
mailto:pete.muir@jboss.org

Road Map

Background

Concepts

Status

2

Goals

Web Beans provides a unifying component model for
Java EE 6, by defining:

A programming model for stateful, contextual
components compatible with EJB 3.0 and JavaBeans

An extensible context model

Component lookup, injection and EL resolution

Conversations

3

Goals

Lifecycle and method interception

An event notification model

Persistence context management for optimistic
transactions

Deployment-time component overriding and
configuration

Integration with JSF, Servlets, JPA and Common
Annotations

4

Target Environment

Should Web Beans be compatible with Java SE?

Java EE now has “profiles”

what profile should Web Beans target?

Web Beans won’t target a specific platform

instead, Web Beans will explicitly define which features
depend upon the availability of other specifications in
the runtime environment

5

Migration

Any existing EJB3 session bean may be made into a
Web Bean by adding annotations

Any existing JSF managed bean may be made into
a Web Bean by adding annotations

New Web Beans may interoperate with existing
EJB3 session beans

via @EJB or JNDI

New EJBs may interoperate with existing Web
Beans

Web Beans injection and interception supported for all
EJBs

6

Theme of Web Beans: Loose
Coupling with Strong Typing

decouple server and client via well-defined APIs and
“binding types”

implementation may be overridden at deployment time

decouple lifecycle of collaborating components

components are contextual, with lifecycle management

allows stateful components to interact like services

decouple orthogonal concerns

via interceptors

decouple message producer from consumer

via events
7

Seam?

Seam 3 will be built on the Web Beans core

Web Beans will provide

Contextual programming model and Event Bus

Integration with JSF and EJB3

Integraton with JPA,Transactions and Bean Validation

Seam will provide

Security

BPM & Rule integration

PDF and Mail JSF libraries

and everything else...
8

Road Map

Background

Concepts

Status

9

What is a Web Bean?

Kinds of components:

Any Java class

EJB session and
singleton beans

Resolver methods

JMS components

Remote components

Essential Ingredients:

Deployment type

API types

Binding types

Name

Implementation

10

Simple Example: Component

11

@Component is a built in
stereotype

public
@Component
class Hello {
 public String hello(String name) {
 return "hello" + name;
 }
}

Simple Example: Client

12

public
@Component
class Printer {
 @Current Hello hello;
 public void hello() {
 System.out.println(hello.hello("world"));
 }
}

@Current is a built in
binding type

Simple Example: Constructor
injection

13

public
@Component
class Printer {
 private Hello hello;
 public Printer(Hello hello) { this.hello=hello; }
 public void hello() {
 System.out.println(hello.hello("world"));
 }
}

Constructors are injected by default;
@Current is the default binding type

Simple Example: Initializer
injection

14

public
@Component
class Printer {
 private Hello hello;
 @Initializer
 void initPrinter(Hello hello) { this.hello=hello; }
 public void hello() {
 System.out.println(hello.hello("world"));
 }
}

Or you can use a post-
creation callback, again with
parameter injection

Component Names

15

public
@Component
@Named("hello")
class Hello {
 public String hello(String name) {
 return "hello" + name;
 }
}

By default components arenʼt available
through EL. There is a default name
used, if none is specified

JSF Page

16

<h:commandButton value=”Say Hello”
 action=”#{hello.hello}”/>

Calling an action on a Web
Bean through EL

Binding Types

A binding type is an annotation that lets a client
choose between multiple implementations of an API
at runtime

Binding types replace lookup via string-based names

@Current is the default binding type

17

Define a binding type

18

public
@BindingType
@Retention(RUNTIME)
@Target({TYPE, METHOD, FIELD, PARAMETER})
@interface Casual {}

Creating a binding type is
really easy!

Using a binding type

19

public
@Casual
@Component
class Hi extends Hello {
 public String hello(String name) {
 return "hi" + name;
 }
}

Weʼre still using the @Component
stereotype. We also specify the
@Casual binding type (in addition to
the implicit @Current)

Using a binding type

20

public
@Component
class Printer {
 @Casual Hello hello;
 public void hello() {
 System.out.println(hello.hello("JBoss Compass"));
 }
}

Here we inject the Hello
component, and require an
implementation which is
bound to @Casual

Deployment Types

A deployment type is an annotation that identifies a
class as a Web Bean

Deployment types may be enabled or disabled, allowing
whole sets of components to be easily enabled or
disabled at deployment time

Deployment types have a precedence, allowing the
container to choose between different implementations
of an API

Deployment types replace verbose XML configuration
documents

Default deployment type: Production
21

Create a deployment type

22

public
@DeploymentType
@Retention(RUNTIME)
@Target({TYPE, METHOD})
@interface Espanol {}

Using a deployment type

23

public
@Espanol
@Component
class Hola extends Hello {
 public String hello(String name) {
 return "hola " + name;
 }
}

Same API, different
implementation

Enabling deployment types

24

<web-beans>
 <component-types>
 <component-type>javax.webbeans.Standard</component-type>
 <component-type>javax.webbeans.Production</component-type>
 <component-type>org.jboss.i18n.Espanol</component-type>
 </component-types>
</web-beans> A strongly ordered list of enabled

deployment types. Notice how everything
is an annotation and so typesafe!

Only component implementations which have enabled
deployment types will we deployed to the container

Scopes and Contexts

Extensible context model

A scope type is an annotation, can write your own
context implementation and scope type annotation

Dependent scope, @Dependent

Built-in scopes:

Any servlet - @ApplicationScoped, @RequestScoped,
@SessionScoped

JSF requests - @ConversationScoped

Custom scopes
25

Scopes

26

public
@SessionScoped
@Component
class Login {
 private User user;
 public void login() {
 user = ...;
 }
 public User getUser() { return user; }
}

Session scoped

Scopes

27

public
@Component
class Printer {
 @Current Hello hello;
 @Current Login login;
 public void hello() {
 System.out.println(
 hello.hello(login.getUser().getName()));
 }
}

No coupling between scope
and use of implementation

Conversation context

28

public
@ConversationScoped
@Component
class ChangePassword {
 @UserDatabase EntityManager em;
 @Current Conversation conversation;
 private User user;
 public User getUser(String userName) {
 conversation.begin();
 user = em.find(User.class, userName);
 }
 public User setPassword(String password) {
 user.setPassword(password);
 conversation.end();
 }
}

Conversation is demarcated by the
application

Conversation has the same semantics as
in Seam

Producer methods

Producer methods allow control over the production
of a component instance

For runtime polymorphism

For control over initialization

For Web-Bean-ification of classes we don’t control

For further decoupling of a “producer” of state from the
“consumer”

29

Producer methods

30

public
@SessionScoped
@Component
class Login {
 private User user;
 public void login() {
 user = ...;
 }

 @Produces
 User getUser() { return user; }
}

Producer methods

31

public
@SessionScoped
@Component
class Login {
 private User user;
 public void login() {
 user = ...;
 }

 @Produces @SessionScoped
 User getUser() { return user; }
}

Producer method
components can a scope
(otherwise inherited from
the declaring component)

Producer methods

32

public
@Component
class Printer {
 @Current Hello hello;
 @Current User user;
 public void hello() {
 System.out.println(
 hello.hello(user.getName()));
 }
}

Much better, no
dependency on Login!

Stereotypes

We have common architectural “patterns” in our
application, with recurring component roles

Capture the roles using stereotypes

33

Stereotypes

A stereotype packages:

A default deployment type

A default scope

A set of interceptor bindings

Restrictions upon allowed scopes

Restrictions upon the Java type

May specify that components have names by default

Built-in stereotypes: @Component, @Model

34

Creating a stereotype

35

public
@RequestScoped
@Named
@Production
@Casual
@Stereotype(
 supportedScopes={RequestScoped.class,
 SessionScoped.class})
@Retention(RUNTIME)
@Target(TYPE)
@interface CasualAction {}

Default scope

Has a defaulted name

Default deployment type

A binding type

The supported scopes;
specify another on the
implementation, bang!

Using a stereotype

36

public
@CasualAction
class Hello {
 public String hello(String name) {
 return "hi " + name;
 }
}

Event producer

37

public
@Component
class Hello {
 @Observable @Casual Event<Greeting> casualHello;
 public void hello(String name) {
 casualHello.fire(new Greeting("hello " + name));
 }
}

Inject an instance of Event using
@Observable. Additional binding types
can be specified to narrow the event
consumers called. API type specified as a
parameter on Event

Event consumer

38

public
@Component
class Printer {
 void onHello(@Observes @Casual Greeting greeting,
 @Current User user) {
 System.out.println(user + “ “ + greeting);
 }
}

Observer methods, take the API
type and additional binding types

Additional parameters can be
specified and will be injected by
the container

Road Map

Background

Concepts

Status

39

JSR-299

Early Draft Review 1 published

Binding types

Events

Deployment types

Contexts

Components

Since then

Specialization

Stereotypes

Decorators
40

Web Beans RI

Work on implementing the current spec (EDR1+)

Components (Biding types, Scopes, Stereotypes

Events

Contexts

Todo

Specialization

Decorators & Interceptors

Container initialization

Beta Release in September
41

Q & A

http://in.relation.to/Bloggers/Pete

http://www.seamframework.org/WebBeans

http://jcp.org/en/jsr/detail?id=299

42

http://in.relation.to/Bloggers/Pete
http://in.relation.to/Bloggers/Pete
http://www.seamframework.org
http://www.seamframework.org

