Pete Muir

JBoss, a division of Red Hat

http://in.relation.to/Bloggers/Pete

pete.muir@jboss.org

http://in.relation.to/Bloggers/Pete
http://in.relation.to/Bloggers/Pete
mailto:pete.muir@jboss.org
mailto:pete.muir@jboss.org

N
-
S
O
M
o
o)
=

Seam

Fewer, finer grained artifacts

© No DTOs required
© Clean MVC

Less noise

© No Struts/EJB 2.x boilerplate code

© No direct calls to HttpSession or HttpRequest
Simple ORM

© Even simpler than the Hibernate API!

JSF is flexible and extensible

© Custom UI widget suites (open source)
© Good AJAX support

JPA

© Powerful object/relational mapping, far beyond EJB 2.x CMP
entity beans

All components are POJO so easily testable with TestNG
or JUnit

©) Backing bean couples layers and is just noise

© Hard to refactor all the XML and String outcomes
© No support for the business layer

© Validation breaks DRY

© XML is too verbose

How do we write our business layer

© EJB3? - can’t be used directly by JSF
© EJB3? - no concept of scopes

Workflow

© Ad-hoc back buttoning not suppored
© No stateful navigation
© Long running business processes?

Multi-tab/window support is not built in

© All operations happen in the session - leakage
© No support for a conversation context

© Memory leak - objects don’t get cleaned up quickly

<h:form>

Ttem: <h:outputText value="#{itemEditor.id} />

Name : <h:1inputText value="#{itemEditor.item.name}">
</;f{\r:gbggiieigth MaXLMUITS Seo ot JSF validation still

Price (EUR): <h:inputText value="#{itemEditor.item.price}"/>

<f:convertNumber type="currency" pattern="S$###. .4#" />

</h:inputText>

<h:messages />

<h:conmandButton value="Save" action="#{itemEditor.save}" />

JSF provides a way of

outputting messages Calling the business
(e.g. error, info) layer directly

® A conversation
scoped Seam
component
@Name("1temEditor") @Scope(CONVERSATION)

public class EditItemBean implements EditItem {

- Inject adSeam_

@In EntityManager entityManager; Managed Persistence
i PR > £ Context (more later)

Long 1d;

ITtem item;

// getter and setter pairs

Begin and Enda
conversation - state is

@Bébin public String find(Long id) {
item = entityManager.find(Item.class, 1d); maintained over

return item == null ? "notFound" : "success"; multiple requests

1 between these
methods

@End public String save(Item item) {
1tem = entityManager.merge(item);
return "success";

I

ks

Background

Web Beans

Contexts available in Seam

Event

Session

Application

: Restore the tree of Ul components

: Synchronize request
parameters with Ul components

: Validate state of UI components

: Synchronize UI components with bound
backing bean properties

: Notify action listeners, call action

methods

: Render a new tree of UI
components

APPLICATION
SESSION

'SESSION

> >

CONVERSATION o CONVERSATION

>

oy EVE.ﬁ\ oy LEVENT |
PAGE

>

INVOKE RENDER INVOKE A conversation spans
APPLICATION RESPONSE APPLICATION multiple requests

Page context starts at beginning of
INVOKE_APPLICATION of phase 1,
and ends at the end of
INVOKE_APPLICATION of phase 2

Depends on the context:

© Conversation context
~» Segmented HttpSession - times out if not used
© Page context
~# Stored in the component tree of the JSF view (page)
~#» Can be stored in HttpSession or serialized to client
©) Business Process context

~» Persisted to database, handled by jBPM

©) Seam provides hierarchical, stateful contexts

©) (Dependency) Injection fine for stateless applications BUT
stateful applications need bidirectional wiring. Think about

aliasing a stateful object into a context

@Name("passwordChanger") public class PasswordChanger {

@In EntityManager entityManager;
Bijection: before the

@In @ut User currentUser; method call, inject
: the current user;

public void changePassword() { 2gt\,e£ itthgargftiﬂggtﬁl’

entityManager.merge(currentUser); context.

¥
¥

What is the Persistence Context?

© “a HashMap of all the objects I've loaded and stored”

© holds (at most) one in-memory object for each database row
while the PC is active

© a natural first-level cache

© can do dirty checking of objects and write SQL as late as
possible (automatic or manual flushing)

The Persistence Context has a flexible scope

© default: same scope as the system transaction (JTA)
© extended: the PC is bound to a stateful session bean

Transaction scoped & detached objects

) LazyInitilalizationException

) NonUniqueObjectException

© Less opportunity for caching

An extended persistence context of a SFSB is
© not available during view rendering (LIE again)
© very complicated propagation rules

No concept of a conversation

Seam managed PC is conversation scoped

© Remains active through conversation,
© Inject using @In
© Allows use of manual flush mode

CONVERSATION

EVENT
; ; ; ;
PROCESS UPDATE INVOKE RENDER

view REQUEST '\ \DATIONS MODEL ~ APPLICATION RESPONSE
: VALUES \ : : :
| | | | | |

PERSISTENCE CONTEXT

i > |

RESTORE _ APPLY

SYSTEM TRANSACTION

FLUSH

17

Background

Seam concepts

Web Beans provides a unifying component model:

> A programming model for stateful, contextual components
compatible with EJB 3.0 and JavaBeans

~» An extensible context model

~» Component lookup, injection and EL resolution

~#» Conversations

~# Lifecycle and method interception

“» An event notification model

~# Persistence context management for optimistic transactions
~» Deployment-time component overriding and configuration

Web Beans may be EJB 3.0 session beans

) take advantage of EJB declarative transactions, security, etc.

Web Beans may be used seamlessly from JSF

=) as a replacement for JSF managed beans
) request, session, application, conversation contexts

Web Beans are usable from servlets
) request, session, application contexts
©) reuses Common Annotations and javax.interceptor

Web Beans will integrate tightly with JPA

) conversation-scoped extended persistence contexts

Any existing EJB3 session bean may be made into a Web
Bean by adding annotations

Any existing JSF managed bean may be made into a Web
Bean by adding annotations

New Web Beans may interoperate with existing EJB3
session beans

= via @EJB or JNDI

New EJBs may interoperate with existing Web Beans

= Web Beans injection and interception supported for all EJBs

New Web Beans may interoperate with existing JSF
managed beans

decouple server and client via well-defined APIs and
“binding types”

©) server implementation may be overridden at deployment
time

decouple lifecycle of collaborating components

) components are contextual, with automatic lifecycle
management

) allows stateful components to interact like services
decouple orthogonal concerns

) via interceptors

completely decouple message producer from consumer

“) via events

Kinds of components:

© Any Java class

©) EJB session and singleton beans
©) Resolver methods

© JMS components

© Remote components

Essential Ingredients:

© Deployment type
© Binding types (optional)
© Name

© Implementation

@Component
public class Hello {

public String hello(String name) {
return “‘hello “ + name;

}

A simple Web Bean

@Component
public class Printer {

@Current Hello hello;

public void hello () {
System.out.println(hello.hello (“world”))

}

A simple client

@Component
public class Printer {
private Hello hello;

public Printer ((@Current Hello hello) { this.hello=hello; }

public void hello () {
System.out.println(hello.hello (“world”))

}

A client using
constructor injection

@Component
public class Printer {

private Hello hello;

@Initializer

initPrinter (CCurrent Hello hello) { this.hello=hello; }

public void hello() {

System.out.println(hello.hello (“world”))
}

A client using an
initializer method

<h:commandButton value="Say Hello”
action="#{hello.hello}”/>

A deployment type identifies a class as a Web Bean:

© Deployment types may be enabled or disabled, allowing
whole sets of components to be easily enabled or disabled at

deployment time

© Deployment types have a precedence, allowing the container
to choose between different implementations of an API

© Deployment types replace verbose XML configuration
documents

@French*®" Declare the
QComponent deployment type

public class Hi extends Hello {
public String hello(String name) ({
return “Bonjour “ + name;

}

<web-beans>
<deployment-types>
<deployment-type>javax.webbeans.Standard</deployment-type>
<deployment-type>javax.webbeans.Component</deployment-type>
<deployment-type>org. jboss.i118n.Spanish</deployment-type>
</deployment-types>
</web-beans>

Enable deployment
types

A binding type is an annotation that lets a client choose
between multiple implementations of an API

© Binding types replace lookup via string-based names
© @Current is the default binding type

Declare a component
which can be resolved
by injection

@Component
public class Hi extends Hello {
public String hello(String name) {
return “hi ” + name;

}

@Component

public class Printer ({ Inject, resolving
@Casual Hello hello; against binding types
public void hello() {

System.out.println(hello.hello(“London”))

}

Extensible context model

©) A scope type is an annotation
© A context is associated with the scope type
©) Custom scopes

Dependent scope, @Dependent

Built-in scopes:

© Any servlet

~» @ApplicationScoped, @RequestScoped, @SessionScoped
© JSF requests

~» @ConversationScoped
©) Web service request, RMI calls...

@ConversationScoped

@Component

public class ChangePassword {
@UserDatabase EntityManager em;
@Current Conversation conversation;

private User user;
public User getUser (String userName) ({
conversation.begin () ;
user = em.find(User.class, userName) ; Start and end a
conversation

}
through programs

public User setPassword(String password) ({
user.setPassword (password) ;
conversation.end() ;

Producer methods allow control over the production of a
component instance

© For runtime polymorphism
) For control over initialization
) For Web-Bean-ification of classes we don’t control

© For further decoupling of a “producer” of state from the
“consumer”

@SessionScoped
@Component
public class Login ({
private User user;
public void login() {
user = ...;

}

@Produces User getUser() { return user; }

@Component
public class Printer {
@Current Hello hello;
@Current User user;
public void hello () {
System.out.println (
hello.hello(user.getName())),

Composite annotations

© Binding types

© Deployment types

© Interceptors

&) Scope type

© requiredType & supportedScope

@Stereotype (requiredTypes=Animal.class)
@Target({ TYPE })

@Retention (RUNTIME) Require these classes
QRequestScoped to be implemented by

Tue P any class annotated
@British

CoanEE with this stereotype
roauction

public @interface BritishAnimals {}
The component is
Reqguest scoped (each
component can have
only one scope

Declare a binding type

The deployment type,
highest precedence is
used

Easy to use and declare Interceptors
Decorator (delegate pattern) - Still under discussion

Simple event bus
Transaction control - Still under discussion

Validation from JSR-304 - Still under discussion
Specification status?

©) Still some open issues, but getting there
© Aimed at EE, but pressure for it to be in SE

Standalone version

© Apache License (very liberal)

© Run in any app server or standalone
Microcontainer based

© LGPL (as with rest of JBoss projects)

© Run in any app server which the MC runs in, or standalone
©) Container will be very extendable

© Provide “legacy” Seam compatibility layer

Get involved!

http://in.relation.to/Bloggers/Pete

http://www.seamframework.org

http://www.seamframework.org/WebBeans

http://in.relation.to/Bloggers/Pete
http://in.relation.to/Bloggers/Pete
http://in.relation.to/Bloggers/GavinsBlog/Tag/Web+Beans
http://in.relation.to/Bloggers/GavinsBlog/Tag/Web+Beans
http://www.seamframework.org
http://www.seamframework.org
http://www.seamframework.org/WebBeans
http://www.seamframework.org/WebBeans

© Security

© Email templates

© PDF templates

©) JavaScript Remoting

© Asynchronicity (Java SE,
EJB3 or Quartz)

© “Google your app” using
Hibernate Search

© Integration and Unit
Testing

© JSF components (deep
integration into JPA)

© Components in groovy
© Webservices

© > 25 examples

© Portal support

© Validation

© BPM support

© Stateful navigation

Wicket as a view layer
GWT as a view layer

First class support for other other containers (e.qg.
Websphere)

Identity Management

SSO for security

Deeper integration with JBoss Portal (inter-portlet
communication)

