
Seam & Web Beans

1

Pete Muir

JBoss, a division of Red Hat

http://in.relation.to/Bloggers/Pete

pete.muir@jboss.org

http://in.relation.to/Bloggers/Pete
http://in.relation.to/Bloggers/Pete
mailto:pete.muir@jboss.org
mailto:pete.muir@jboss.org

Road Map

Background

Seam

Web Beans

2

Advantages of JSF/JPA over
Struts/EJB 2

Fewer, finer grained artifacts

No DTOs required

Clean MVC

Less noise

No Struts/EJB 2.x boilerplate code

No direct calls to HttpSession or HttpRequest

Simple ORM

 Even simpler than the Hibernate API!

3

Advantages of JSF/JPA over
Struts/EJB 2

JSF is flexible and extensible

Custom UI widget suites (open source)

Good AJAX support

JPA

Powerful object/relational mapping, far beyond EJB 2.x CMP
entity beans

 All components are POJO so easily testable with TestNG
or JUnit

4

But, still some problems

JSF

Backing bean couples layers and is just noise

Hard to refactor all the XML and String outcomes

No support for the business layer

Validation breaks DRY

XML is too verbose

How do we write our business layer

EJB3? - can’t be used directly by JSF

EJB3? - no concept of scopes

5

And some more challenges

Workflow

Ad-hoc back buttoning not suppored

No stateful navigation

Long running business processes?

Multi-tab/window support is not built in

All operations happen in the session - leakage

No support for a conversation context

Memory leak - objects don’t get cleaned up quickly

6

<h:form>

 Item: <h:outputText value="#{itemEditor.id} />
 Name: <h:inputText value="#{itemEditor.item.name}">
 <f:validateLength maximum="255" />
 </h:inputText>
 Price (EUR): <h:inputText value="#{itemEditor.item.price}"/>
 <f:convertNumber type="currency" pattern="$###.##" />
 </h:inputText>
 <h:messages />
 <h:commandButton value="Save" action="#{itemEditor.save}" />
</h:form>

Simple example

7

JSF validation still

Calling the business
layer directly

JSF converter

JSF provides a way of
outputting messages
(e.g. error, info)

@Name("itemEditor") @Scope(CONVERSATION)
public class EditItemBean implements EditItem {

 @In EntityManager entityManager;

 Long id;
 Item item;
 // getter and setter pairs

 @Begin public String find(Long id) {
 item = entityManager.find(Item.class, id);
 return item == null ? "notFound" : "success";
 }

 @End public String save(Item item) {
 item = entityManager.merge(item);
 return "success";
 }
 }

Adding Seam

8

Begin and End a
conversation - state is
maintained over
multiple requests
between these
methods

A conversation
scoped Seam
component

Inject a Seam
Managed Persistence
Context (more later)

Road Map

Background

Seam

Web Beans

9

Contextual variables

Contexts available in Seam

Event

Page

Conversation

Session

Business Process

Application

10

JSF lifecycle - quick review

RESTORE VIEW: Restore the tree of UI components

APPLY REQUEST VALUES: Synchronize request
parameters with UI components

PROCESS VALIDATIONS: Validate state of UI components

UPDATE MODEL: Synchronize UI components with bound
backing bean properties

INVOKE APPLICATION: Notify action listeners, call action
methods

RENDER RESPONSE: Render a new tree of UI
components

11

Application lifecycle

SESSION

APPLICATION

SESSION

CONVERSATION CONVERSATION

EVENT EVENT

INVOKE

APPLICATION

RENDER

RESPONSE

PAGE

INVOKE

APPLICATION

EVENT

BUSINESS PROCESS

12

A conversation spans
multiple requests

Page context starts at beginning of
INVOKE_APPLICATION of phase 1,
and ends at the end of
INVOKE_APPLICATION of phase 2

How is state stored?

13

Depends on the context:

Conversation context

 Segmented HttpSession - times out if not used

Page context

Stored in the component tree of the JSF view (page)

Can be stored in HttpSession or serialized to client

Business Process context

Persisted to database, handled by jBPM

@Name("passwordChanger") public class PasswordChanger {

 @In EntityManager entityManager;

 @In @Out User currentUser;

 public void changePassword() {
 entityManager.merge(currentUser);
 }
}

Bijection

14

Seam provides hierarchical, stateful contexts

(Dependency) Injection fine for stateless applications BUT
stateful applications need bidirectional wiring. Think about
aliasing a stateful object into a context

Bijection: before the
method call, inject
the current user;
after the method call,
save it back into the
context.

JPA Persistence Context

What is the Persistence Context?

“a HashMap of all the objects I’ve loaded and stored”

holds (at most) one in-memory object for each database row
while the PC is active

a natural first-level cache

can do dirty checking of objects and write SQL as late as
possible (automatic or manual flushing)

The Persistence Context has a flexible scope

default: same scope as the system transaction (JTA)

extended: the PC is bound to a stateful session bean

15

Which PC scope to use?

Transaction scoped & detached objects

LazyInitializationException

NonUniqueObjectException

Less opportunity for caching

An extended persistence context of a SFSB is

not available during view rendering (LIE again)

very complicated propagation rules

No concept of a conversation

16

Seam managed persistence and
transactions

Seam managed PC is conversation scoped

Remains active through conversation,

Inject using @In

Allows use of manual flush mode

PERSISTENCE CONTEXT

CONVERSATION

EVENT EVENT

RENDER

RESPONSE

INVOKE

APPLICATION

UPDATE

MODEL

PROCESS

VALIDATIONS

RESTORE

VIEW

APPLY

REQUEST

VALUES

SYSTEM TRANSACTION

FLUSH

17

Road Map

Background

Seam concepts

Web Beans

18

Web Beans Goal’s

Web Beans provides a unifying component model:
A programming model for stateful, contextual components
compatible with EJB 3.0 and JavaBeans

An extensible context model

Component lookup, injection and EL resolution

Conversations

Lifecycle and method interception

An event notification model

Persistence context management for optimistic transactions

Deployment-time component overriding and configuration

19

Platform integration

Web Beans may be EJB 3.0 session beans

take advantage of EJB declarative transactions, security, etc.

Web Beans may be used seamlessly from JSF

as a replacement for JSF managed beans

request, session, application, conversation contexts

Web Beans are usable from servlets

request, session, application contexts

reuses Common Annotations and javax.interceptor

Web Beans will integrate tightly with JPA

conversation-scoped extended persistence contexts
20

Migration

Any existing EJB3 session bean may be made into a Web
Bean by adding annotations

Any existing JSF managed bean may be made into a Web
Bean by adding annotations

New Web Beans may interoperate with existing EJB3
session beans

via @EJB or JNDI

New EJBs may interoperate with existing Web Beans

Web Beans injection and interception supported for all EJBs

New Web Beans may interoperate with existing JSF
managed beans

21

Loose Coupling

decouple server and client via well-defined APIs and
“binding types”

server implementation may be overridden at deployment
time

decouple lifecycle of collaborating components

components are contextual, with automatic lifecycle
management

allows stateful components to interact like services

 decouple orthogonal concerns

via interceptors

completely decouple message producer from consumer

via events 22

What is a Web Bean?

Kinds of components:

Any Java class

EJB session and singleton beans

Resolver methods

JMS components

Remote components

Essential Ingredients:

Deployment type

Binding types (optional)

Name

Implementation 23

@Component
public class Hello {

 public String hello(String name) {
 return “hello “ + name;
 }

}

Example

24

A simple Web Bean

@Component
 public class Printer {

 @Current Hello hello;

 public void hello() {
 System.out.println(hello.hello(“world”));
 }

}

Example

25

A simple client

@Component
public class Printer {
 private Hello hello;

 public Printer(@Current Hello hello) { this.hello=hello; }

 public void hello() {
 System.out.println(hello.hello(“world”));
 }

}

Example

26

A client using
constructor injection

@Component
public class Printer {

 private Hello hello;

 @Initializer
 initPrinter(@Current Hello hello) { this.hello=hello; }

 public void hello() {
 System.out.println(hello.hello(“world”));
 }
}

Example

27

A client using an
initializer method

<h:commandButton value=”Say Hello”
 action=”#{hello.hello}”/>

Example

28

Access from EL

Deployment Types

A deployment type identifies a class as a Web Bean:

Deployment types may be enabled or disabled, allowing
whole sets of components to be easily enabled or disabled at
deployment time

Deployment types have a precedence, allowing the container
to choose between different implementations of an API

Deployment types replace verbose XML configuration
documents

29

Deployment Type example

30

@French
@Component
public class Hi extends Hello {
 public String hello(String name) {
 return “Bonjour ” + name;
 }
}

<web-beans>
 <deployment-types>
 <deployment-type>javax.webbeans.Standard</deployment-type>
 <deployment-type>javax.webbeans.Component</deployment-type>
 <deployment-type>org.jboss.i18n.Spanish</deployment-type>
 </deployment-types>
</web-beans>

Enable deployment
types

Declare the
deployment type

Binding Types

A binding type is an annotation that lets a client choose
between multiple implementations of an API

Binding types replace lookup via string-based names

@Current is the default binding type

31

@Casual
@Component
public class Hi extends Hello {
 public String hello(String name) {
 return “hi ” + name;
 }
}

Binding Type example

32

@Component
public class Printer {
 @Casual Hello hello;
 public void hello() {
 System.out.println(hello.hello(“London”));
 }
}

Declare a component
which can be resolved
by injection

Inject, resolving
against binding types

Scopes and Contexts

Extensible context model

A scope type is an annotation

A context is associated with the scope type

Custom scopes

Dependent scope, @Dependent

Built-in scopes:

Any servlet

@ApplicationScoped, @RequestScoped, @SessionScoped

JSF requests

@ConversationScoped

Web service request, RMI calls...
33

@ConversationScoped
@Component
public class ChangePassword {
 @UserDatabase EntityManager em;
 @Current Conversation conversation;
 private User user;
 public User getUser(String userName) {
 conversation.begin();
 user = em.find(User.class, userName);
 }
 public User setPassword(String password) {
 user.setPassword(password);
 conversation.end();
 }
}

Scope example

34

Start and end a
conversation
through programs

Producer Methods

Producer methods allow control over the production of a
component instance

For runtime polymorphism

For control over initialization

For Web-Bean-ification of classes we don’t control

For further decoupling of a “producer” of state from the
“consumer”

35

@SessionScoped
@Component
public class Login {
 private User user;
 public void login() {
 user = ...;
 }

 @Produces User getUser() { return user; }
}

Producer Methods example

36

@Component
public class Printer {
 @Current Hello hello;
 @Current User user;
 public void hello() {
 System.out.println(
 hello.hello(user.getName()));
 }
}

Stereotypes

Composite annotations

Binding types

Deployment types

Interceptors

Scope type

requiredType & supportedScope

37

@Stereotype(requiredTypes=Animal.class)
@Target({ TYPE })
@Retention(RUNTIME)
@RequestScoped
@British
@Production
public @interface BritishAnimals {}

Stereotype

38

Require these classes
to be implemented by
any class annotated
with this stereotype

The component is
Request scoped (each
component can have
only one scope

Declare a binding type

The deployment type,
highest precedence is
used

More Web Beans

Easy to use and declare Interceptors

Decorator (delegate pattern) - Still under discussion

 Simple event bus

Transaction control - Still under discussion

Validation from JSR-304 - Still under discussion

Specification status?

Still some open issues, but getting there

Aimed at EE, but pressure for it to be in SE

39

Web Beans RI

Standalone version

Apache License (very liberal)

Run in any app server or standalone

Microcontainer based

LGPL (as with rest of JBoss projects)

Run in any app server which the MC runs in, or standalone

Container will be very extendable

Provide “legacy” Seam compatibility layer

Get involved!

40

Q&A

http://in.relation.to/Bloggers/Pete

http://www.seamframework.org

http://www.seamframework.org/WebBeans

41

http://in.relation.to/Bloggers/Pete
http://in.relation.to/Bloggers/Pete
http://in.relation.to/Bloggers/GavinsBlog/Tag/Web+Beans
http://in.relation.to/Bloggers/GavinsBlog/Tag/Web+Beans
http://www.seamframework.org
http://www.seamframework.org
http://www.seamframework.org/WebBeans
http://www.seamframework.org/WebBeans

Seam provides...

Security
Email templates
PDF templates
JavaScript Remoting
Asynchronicity (Java SE,
EJB3 or Quartz)
“Google your app” using
Hibernate Search
Integration and Unit
Testing

JSF components (deep
integration into JPA)
Components in groovy
Webservices
> 25 examples
Portal support
Validation
BPM support
Stateful navigation

42

Seam 2.1 Roadmap

Wicket as a view layer

GWT as a view layer

First class support for other other containers (e.g.
Websphere)

Identity Management

SSO for security

Deeper integration with JBoss Portal (inter-portlet
communication)

43

