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Who am I?

● Author of Seam in Action, Manning 2008

● Seam and Weld project member

● JSR-314 (JSF 2.0) EG member

● Champion for openness
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Project terminology

● CDI (JSR-299)
● Contexts & dependency injection for the Java EE platform

● Weld
● JSR-299 Reference Implementation
● Bootstrap outside of Java EE (Servlet, Java SE)

● Seam
● Portable extensions for the Java EE platform
● Integrations with non-Java EE technologies
● Akin to ecosystem of JSF component libraries
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What JSR-299 (CDI) provides

● A powerful new set of services for Java EE components
● Lifecycle management for stateful components bound to 

well-defined contexts (+ new conversation context)
● A type-safe approach to dependency injection
● Interaction via an event notification facility
● Reduced coupling between interceptors and beans
● Decorators—interceptors better suited for solving 

business concerns
● Unified EL integration (named beans)
● An SPI for developing portable extensions for the

Java EE platform
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JSR-299: The big picture

● Fills a major hole in the 
Java EE platform

● A catalyst for emerging 
Java EE specs

● Excels at solving goal
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Stated goal of JSR-299

Web tier
(JSF)

Transactional tier
(EJB)
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Going beyond Seam

● Solve JSF-EJB integration problem at platform level

● Get an expert group (EG) involved
● Buy-in from broader Java EE community 
● Formulate a more robust design
● Establish foundation for an

ecosystem of extensions
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Your bean is my bean

● Everyone trying to solve the same problem
● JSF, EJB, CDI (JSR-299), Seam, Spring, Guice, etc.

● Need a “unified bean definition”
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Managed bean

● Common bean definition

● Life cycle of instance 
managed by container

● Basic set of services
● Resource injection
● Lifecycle callbacks
● Interceptors

● Foundation on which 
other specs can build

Managed bean

JSF EJB CDI

Read about how managed beans evolved: http://www.infoq.com/news/2009/11/weld10
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CDI replaces JSF managed beans

CDI

JSF managed beans

Facelets

JSP
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Why injection?

● Injection is the weakest aspect of Java EE

● Existing annotations pertain to specific components
● @EJB
● @PersistenceContext, @PersistenceUnit
● @Resource (e.g., DataSource, UserTransaction)

● Third-party solutions rely on name-based injection
● Not type-safe
● Fragile
● Requires special tooling to validate
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Leverage and extend Java’s type system

● JSR-299 introduces creative use of annotations

● Annotations considered part of type

● Comprehensive generics support

● Why augment type?
● Can’t always rely on class extension (e.g., primitives)
● Avoid hard dependency between client and impl
● Don’t rely on weak association of field  bean name
● Validation can be done at startup



13 CDI, Weld and Seam | Dan Allen

JSR-299 theme

Loose coupling...

...with strong typingstrong typing

@Inject
@Observes

@InterceptorBinding

@Qualifier

Event<Order>

@Produces @WishList
List<Product> getWishList()

@UserDatabase EntityManager
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Loose coupling

● Decouple server and client
● Using well-defined types and “qualifiers”
● Allows server implementation to vary

● Decouple lifecycle of collaborating components
● Automatic contextual lifecycle management
● Stateful components interact like services

● Decouple orthogonal concerns (AOP)
● Interceptors
● Decorators

● Decouple message producer from message consumer
● Events
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StrongStrong typing typing

● Eliminate reliance on string-based names

● Compiler can detect typing errors
● No special authoring tools required for code completion
● Casting virtually eliminated

● Semantic code errors detected at application startup
● Tooling can detect ambiguous dependencies
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What can be injected?

● Defined by the specification
● Almost any plain Java class (managed beans)
● EJB session beans
● Objects returned by producer methods or fields
● Java EE resources (e.g., Datasource, UserTransaction)
● Persistence units and persistence contexts
● Web service references
● Remote EJB references

● SPI allows third-party frameworks to introduce additional 
injectable objects

● Annotations aligned with JSR-330
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CDI bean

● Set of bean types (non-empty)

● Set of qualifiers (non-empty)

● Scope

● Bean EL name (optional)

● Alternatives

● Set of interceptor bindings

● Bean implementation
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Bean services with CDI

● @ManagedBean annotation not required (implicit)

● Transparent create/destroy and scoping of instance

● Type-safe resolution at injection or lookup

● Name-based resolution when used in EL expression

● Lifecycle callbacks

● Method interception and decoration

● Event notification
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Welcome to CDI (managed bean version)

public class Welcome {
   public String buildPhrase(String city) {
      return "Welcome to " + city + "!";
   } 
}

● When is a bean recognized?

/META-INF/beans.xml in same classpath entry



20 CDI, Weld and Seam | Dan Allen

Welcome to CDI (session bean version)

public
@Stateless
class WelcomeBean implements Welcome {
   public String buildPhrase(String city) {
      return "Welcome to " + city + "!";
   }
}
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A simple client: field injection

public class Greeter {
   @Inject Welcome welcome;

   public void welcome() {
      System.out.println(
         welcome.buildPhrase("Orlando"));
   }
}

@Default qualifier implied@Default qualifier implied
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A simple client: constructor injection

public class Greeter {
   Welcome welcome;

   @Inject
   public Greeter(Welcome welcome) {
      this.welcome = welcome;
   }

   public void welcomeVisitors() {
      System.out.println(
         welcome.buildPhrase("Orlando"));
   }
}

Designates the constructor
CDI should invoke
Designates the constructor
CDI should invoke
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A simple client: initializer injection

public class Greeter {
   Welcome welcome;

   @Inject
   void init(Welcome welcome) {
      this.welcome = welcome;
   }

   public void welcomeVisitors() {
      System.out.println(
         welcome.buildPhrase("Orlando"));
   }
}

Designates the initializer
method CDI should invoke
Designates the initializer
method CDI should invoke
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Multiple implementations

● Two scenarios:
● Multiple implementations of same interface
● One implementation extends another

public class TranslatingWelcome extends Welcome {

   @Inject GoogleTranslator translator;

   public String buildPhrase(String city) {
      return translator.translate(
         "Welcome to " + city + "!");
   } 
}

● Which implementation should be selected for injection?
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Qualifier

An annotation used to resolve a implementation

variant of an API at an injection point
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Defining a qualifier

● A qualifier is an annotation
public
@Qualifier
@Retention(RUNTIME)
@Target({TYPE, METHOD, FIELD, PARAMETER})
@interface Translating {}
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Qualifying an implementation

● Add qualifier annotation to make type more specific
public
@Translating
class TranslatingWelcome extends Welcome {

   @Inject GoogleTranslator translator;

   public String buildPhrase(String city) {
      return translator.translate(
         "Welcome to " + city + "!");
   } 
}

● Resolves ambiguity at injection point
● There can never been an ambiguity when resolving!
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Using a specific implementation

● Must request to use qualified implementation explicitly
● Otherwise you get unqualified implementation

public class Greeter {
   Welcome welcome;

   @Inject
   void init(@Translating Welcome welcome) {
      this.welcome = welcome
   }

   public void welcomeVisitors() {
      System.out.println(
         welcome.buildPhrase("Mountain View"));
   }
}

No reference to implementation class!No reference to implementation class!
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Alternative bean

● Swap replacement implementation per deployment

● Replaces bean and its producer methods and fields

● Disabled by default
● Must be activated in /META-INF/beans.xml

Put simply: an override
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Defining an alternative

public
@Alternative
@Specializes
class TranslatingWelcome extends Welcome {

   @Inject GoogleTranslator translator;

   public String buildPhrase(String city) {
      return translator.translate(
         "Welcome to " + city + "!");
   }
}
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Substituting the alternative

● Implementation activated using deployment-specific 
/META-INF/beans.xml resource

<beans>
  <alternatives>
    <class>com.acme.TranslatingWelcome</class>
  </alternatives>
</beans>

● Could also enable alternative by introducing and 
activating an intermediate annotation
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Assigning a bean name

public
@Named("greeter")
class Greeter {
   Welcome welcome;

   @Inject
   public Greeter(Welcome welcome) {
      this.welcome = welcome;
   }

   public void welcomeVisitors() {
      System.out.println(
         welcome.buildPhrase("Orlando"));
   }
}

Same as default name when
no annotation value specified 
Same as default name when
no annotation value specified 
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Assigning a bean name

public
@Named
class Greeter {
   Welcome welcome;

   @Inject
   public Greeter(Welcome welcome) {
      this.welcome = welcome;
   }

   public void welcomeVisitors() {
      System.out.println(
         welcome.buildPhrase("Orlando"));
   }
}
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Collapsing layers

● Use the bean directly in the JSF view
<h:form>
   <h:commandButton value="Welcome visitors"
      action="#{greeter.welcomeVisitors}"/>
</h:form>

● But we still need the bean to be stored in a scope  
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A stateful bean

● Declare bean to be saved for duration of request
public
@RequestScoped
@Named("greeter")
class Greeter {
   Welcome welcome;
   private String city; // getter and setter hidden

   @Inject public Greeter(Welcome welcome) {
      this.welcome = welcome
   }

   public void welcomeVisitors() {
      System.out.println(welcome.buildPhrase(city));
   }
}
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Collapsing layers with state management

● Now it’s possible for bean to hold state
<h:form>
   <h:inputText value="#{greeter.city}"/>
   <h:commandButton value="Welcome visitors"
      action="#{greeter.welcomeVisitors}"/>
</h:form>

● Satisfies initial goal of integrating JSF and EJB
● Except in this case, it extends to plain managed beans
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Scope types and contexts

● Absence of scope - @Dependent
● Bound to lifecycle of bean holding reference to it

● Servlet scopes
● @ApplicationScoped
● @RequestScoped
● @SessionScoped

● JSF conversation scope - @ConversationScoped

● Custom scopes
● Define scope type annotation (i.e., @FlashScoped)
● Implement context API
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Scope transparency

● Scopes are not visible to client
● No coupling between scope and use of type
● Scoped beans are proxied for thread safety
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Scoping a collaborating bean 

public
@SessionScoped
class Profile {
   private Identity identity;

   public void register() {
      identity = ...;
   }

   public Identity getIdentity() {
       return identity;
   }
}
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Collaboration between stateful beans

public
@Named @RequestScoped
class Greeter {
   Welcome welcome;
   Profile profile;
   private String city;

   @Inject
   public Greeter(Welcome welcome, Profile profile) {
      this.welcome = welcome;
      this.profile = profile;
   }
   ...

   public void welcomeVisitors() {
      System.out.println(welcome.buildPhrase(
         profile.getIdentity(), city));
   }
}

No awareness of scopeNo awareness of scope
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Conversation context

● Request <= Conversation << Session

●

● Boundaries demarcated by application

● Optimistic transaction
● Conversation-scoped persistence context
● No fear of exceptions on lazy fetch operations
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Controlling the conversation

public
@ConversationScoped
class BookingAgent {

   @Inject @BookingDatabase EntityManager em;
   @Inject Conversation conversation;

   private Hotel selected;
   private Booking booking;

   public void select(Hotel h) {
      selected = em.find(Hotel.class, h.getId());
      conversation.begin();
   }

   ...
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Controlling the conversation

   ...

   public boolean confirm() {
      if (!isValid()) {
         return false;
      }

      em.persist(booking);
      conversation.end();
      return true;
   }
}
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Producer method

A method whose return value is an injectable object

Used for:
● Types which you cannot modify
● Runtime selection of a bean instance
● When you need to do extra and/or conditional setup of a 

bean instance

● Roughly equivalent to Seam’s @Factory annotation
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Producer method examples

@Produces
public PaymentProcessor getPaymentProcessor(
      @Synchronous PaymentProcessor sync,
      @Asynchronous PaymentProcessor async) {
   return isSynchronous() ? sync : async;
} 

@Produces @SessionScoped @WishList
public List<Product> getWishList() { ... }
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Bridging Java EE resources

● Use producer field to expose Java EE resource
public
@Stateless
class UserEntityManagerFactory {
   @Produces @UserRepo
   @PersistenceUnit(unitName = "userPU")
   EntityManagerFactory emf;
}

public
@Stateless
class PricesTopic {
   @Produces @Prices
   @Resource(name = "java:global/env/jms/Prices")
   Topic pricesTopic;
}

Java EE 6 global JNDI nameJava EE 6 global JNDI name

Java EE resource annotationsJava EE resource annotations
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Injecting resource in type-safe way

● String-based resource names are hidden
public class UserManager {
   @Inject @UserRepo EntityManagerFactory emf;
   ...
}

public class StockDisplay {
   @Inject @Prices Topic pricesTopic;
   ...
}
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Promoting state

● Producer methods can promote state as injectable object
public
@RequestScoped
class Profile {
   private Identity identity;

   public void register() {
      identity = ...;
   }

   @Produces @SessionScoped
   public Identity getIdentity() {
       return identity;
   }
}

Could also declare
qualifiers and/or EL name
Could also declare
qualifiers and/or EL name
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Using promoted state

public
@RequestScoped @Named
class Greeter {
   Welcome welcome;
   Identity identity;
   private String city;

   @Inject
   public Greeter(Welcome welcome, Identity ident) {
      this.welcome = welcome;
      this.identity = ident;
   }
   ...

   public void welcomeVisitors() {
      System.out.println(
         welcome.buildPhrase(identity, city));
   }
}

No awareness of scopeNo awareness of scope
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Rethinking interceptors

● Interceptors handle orthogonal concerns

● Java EE 5 interceptors bound directly to component
● @Interceptors annotation on bean type

● What’s the problem?
● Shouldn’t be coupled to implementation

● Requires level of indirection

● Should be deployment-specific
● Tests vs production
● Opt-in best strategy for enabling

● Ordering should be defined centrally
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Interceptor wiring in JSR-299 (1)

● Define an interceptor binding type
public
@InterceptorBinding
@Retention(RUNTIME)
@Target({TYPE, METHOD})
@interface Secure {}
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Interceptor wiring in JSR-299 (2)

● Marking the interceptor implementation
public
@Secure
@Interceptor
class SecurityInterceptor {

   @AroundInvoke
   public Object aroundInvoke(InvocationContext ctx)
         throws Exception {
      // ...enforce security...
      ctx.proceed();
   }

}
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Interceptor wiring in JSR-299 (3)

● Applying interceptor to class with proper semantics
public
@Secure
class AccountManager {

   public boolean transfer(Account a, Account b) {
      ...
   }

}
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Interceptor wiring in JSR-299 (4)

● Applying interceptor to method with proper semantics
public class AccountManager {

   public
   @Secure
   boolean transfer(Account a, Account b) {
      ...
   }

}
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Multiple interceptors

● Application developer only worries about semantics
public
@Transactional
class AccountManager {

   public
   @Secure
   boolean transfer(Account a, Account b) {
      ...
   }

}
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Enabling and ordering interceptors

● Interceptors referenced by binding type

● Specify binding type in /META-INF/beans.xml to activate
<beans>
   <interceptors>     
       <class>com.acme.SecurityInterceptor</class>
       <class>com.acme.TransactionInterceptor</class>
   </interceptors>
</beans>

Interceptors applied in order listedInterceptors applied in order listed
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Composite interceptor bindings

● Interceptor binding types can be meta-annotations
public
@Secure
@Transactional
@InterceptorBinding
@Retention(RUNTIME)
@Target(TYPE)
@interface BusinessOperation {}

Order does not matterOrder does not matter
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Multiple interceptors (but you won’t know it)

● Interceptors inherited from composite binding types
public
@BusinessOperation
class AccountManager {

   public boolean transfer(Account a, Account b) {
      ...
   }

}
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Wrap up annotations using stereotypes

● Common architectural patterns – recurring roles

● A stereotype packages:
● A default scope
● A set of interceptor bindings
● The ability to that beans are named
● The ability to specify that beans are alternatives
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Annotation jam

● Without stereotypes, annotations pile up
public
@Secure
@Transactional
@RequestScoped
@Named
class AccountManager {

   public boolean transfer(Account a, Account b) {
      ...
   }

}
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Defining a stereotype

● Stereotypes are annotations that group annotations
public
@Secure
@Transactional
@RequestScoped
@Named
@Stereotype
@Retention(RUNTIME)
@Target(TYPE)
@interface BusinessComponent {}
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Using a stereotype

● Stereotypes give a clear picture, keep things simple
public
@BusinessComponent
class AccountManager {

   public boolean transfer(Account a, Account b) {
      ...
   }

}
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Decorators

● Intercept invocations for a particular Java interface

● Aware of semantics

● Complement interceptors

● Enabled in same way as interceptors
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Decorator example

public
@Decorator
abstract class LargeTxDecorator implements Account {
   @Inject @Delegate @Any Account account;
   @PersistenceContext EntityManager em;

   public void withdraw(BigDecimal amount) {
      account.withdraw(amount);
      if (amount.compareTo(LARGE_AMOUNT) > 0) {
         em.persist(new LoggedWithdrawl(amount));
      }
   }

}
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Events

● Completely decouples action and reactions

● Observers can use selectors to tune which event 
notifications are received

● Events can be observed immediately, at end of 
transaction or asynchronously
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Firing an event

public class GroundController {
   @Inject @Landing Event<Flight> flightLanding;

   public void clearForLanding(String flightNum) {
      flightLanding.fire(new Flight(flightNum));
   }
}

Event instance with
type-safe payload
Event instance with
type-safe payload
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An event observer

public class GateServices {
   public void onIncomingFlight(
         @Observes @Landing Flight flight,
         Greeter greeter,
         CateringService cateringService) {
      Gate gate = ...;
      flight.setGate(gate);
      cateringService.dispatch(gate);
      greeter.welcomeVisitors();
   }
}

Takes event API type with
additional binding type
Takes event API type with
additional binding type

Additional parameters are
injected by the container
Additional parameters are
injected by the container
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Weld

● JSR-299 reference implementation

● Developed under the Seam project umbrella

● Version 1.0.0 available, including Maven archetypes!

● Bundled in JBoss AS 6 and GlassFish V3

● Runs on Tomcat, Jetty and Java SE

WeldWeld

CoreCore

OSGiOSGi

TCK 
execution

TCK 
execution

Integrator 
SPI

Integrator 
SPI

ExtensionsExtensions

ServletServlet

Java SEJava SE
CDI TCKCDI TCK

TCKTCK
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Seam’s mission statement

To provide a fully integrated development

platform for building rich Internet applications
based upon the Java EE environment
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Seam is our future

“The future for all of our projects and platform is Seam.”

“[Developers] won't have to worry about learning a new 
component model when they move between platforms.”

- Mark Little, JBoss CTO

http://blogs.jboss.org/blog/mlittle/2009/11/11/The_future_of_component_models.txt
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Seam framework stack

● CDI foundation

● Enhanced, declarative security

● Support for multiple view layers (JSF 2, Wicket, Flex)

● JavaScript remoting (a la DWR)

● RESTeasy integration

● Bridges to Seam 2, Spring and Guice

● Email, graphics, PDF and XLS

● Pageflows and business processes

● JBoss Tools
http://in.relation.to/Bloggers/HowToStartLearningJavaEE6
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Ecosystem architecture

Seam FrameworkSeam Framework

Seam 
Security
Seam 

Security Seam MailSeam Mail Drools 5 
support

Drools 5 
support

RESTEasy
integration

RESTEasy
integration

Wicket
support
Wicket
support ......

CDI 1.0

WeldWeld

CoreCore CDI TCKCDI TCK

OSGiOSGi

Tomcat/Jetty

JBoss AS > 5.2

GlassFish V3

IntegrationIntegration

ServletServlet

IntegrationIntegration

OpenOpen
Web BeansWeb Beans
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Seam 3: Key themes

● Modularity
● Seam à la carte

● Portability
● Run on any CDI implementation

● Full stack
● Similar to Eclipse’s coordinated release
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Drawing the line

● Unportable extension (UE)
● Integrates with proprietary SPIs in Weld

● Portable extension (PE) - Weld
● Simple or general purpose
● Doesn’t pull in extra dependencies

● Portable extension (PE) - Seam
● Everything else
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End-to-end testing

● SeamTest modularized

● ShrinkWrap
● Declarative creation of archives, made simple

JavaArchive archive =
   Archives.create("archive.jar", JavaArchive.class)
      .addClasses(MyClass.class,MyOtherClass.class)
      .addResource("mystuff.properties");

● Arquillian
● Pluggable unit test
● Standalone and in-container POJO tests
● @RunWith(Arquillian.class)
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Summary

● JSR-299 provides a set of services for Java EE
● Satisfies original goal to bridge JSF and EJB
● Offers loose coupling with strong typingstrong typing
● Catalyzed the managed bean specification

● Other problems needed to be solved
● Robust dependency injection and context model
● Event notification facility, furthering the loose coupling
● Extensive SPI for third-parties to integrate with Java EE

● Weld: JSR-299 Reference Implementation

● Seam: Portable extensions for Java EE
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