

CDI (JSR-299), Weld
and the future of Seam

Dan Allen
Senior Software Engineer
JBoss, by Red Hat

2 CDI, Weld and Seam | Dan Allen

Who am I?

● Author of Seam in Action, Manning 2008

● Seam and Weld project member

● JSR-314 (JSF 2.0) EG member

● Champion for openness

3 CDI, Weld and Seam | Dan Allen

Project terminology

● CDI (JSR-299)
● Contexts & dependency injection for the Java EE platform

● Weld
● JSR-299 Reference Implementation
● Bootstrap outside of Java EE (Servlet, Java SE)

● Seam
● Portable extensions for the Java EE platform
● Integrations with non-Java EE technologies
● Akin to ecosystem of JSF component libraries

4 CDI, Weld and Seam | Dan Allen

What JSR-299 (CDI) provides

● A powerful new set of services for Java EE components
● Lifecycle management for stateful components bound to

well-defined contexts (+ new conversation context)
● A type-safe approach to dependency injection
● Interaction via an event notification facility
● Reduced coupling between interceptors and beans
● Decorators—interceptors better suited for solving

business concerns
● Unified EL integration (named beans)
● An SPI for developing portable extensions for the

Java EE platform

5 CDI, Weld and Seam | Dan Allen

JSR-299: The big picture

● Fills a major hole in the
Java EE platform

● A catalyst for emerging
Java EE specs

● Excels at solving goal

6 CDI, Weld and Seam | Dan Allen

Stated goal of JSR-299

Web tier
(JSF)

Transactional tier
(EJB)

7 CDI, Weld and Seam | Dan Allen

Going beyond Seam

● Solve JSF-EJB integration problem at platform level

● Get an expert group (EG) involved
● Buy-in from broader Java EE community
● Formulate a more robust design
● Establish foundation for an

ecosystem of extensions

8 CDI, Weld and Seam | Dan Allen

Your bean is my bean

● Everyone trying to solve the same problem
● JSF, EJB, CDI (JSR-299), Seam, Spring, Guice, etc.

● Need a “unified bean definition”

9 CDI, Weld and Seam | Dan Allen

Managed bean

● Common bean definition

● Life cycle of instance
managed by container

● Basic set of services
● Resource injection
● Lifecycle callbacks
● Interceptors

● Foundation on which
other specs can build

Managed bean

JSF EJB CDI

Read about how managed beans evolved: http://www.infoq.com/news/2009/11/weld10

10 CDI, Weld and Seam | Dan Allen

CDI replaces JSF managed beans

CDI

JSF managed beans

Facelets

JSP

11 CDI, Weld and Seam | Dan Allen

Why injection?

● Injection is the weakest aspect of Java EE

● Existing annotations pertain to specific components
● @EJB
● @PersistenceContext, @PersistenceUnit
● @Resource (e.g., DataSource, UserTransaction)

● Third-party solutions rely on name-based injection
● Not type-safe
● Fragile
● Requires special tooling to validate

12 CDI, Weld and Seam | Dan Allen

Leverage and extend Java’s type system

● JSR-299 introduces creative use of annotations

● Annotations considered part of type

● Comprehensive generics support

● Why augment type?
● Can’t always rely on class extension (e.g., primitives)
● Avoid hard dependency between client and impl
● Don’t rely on weak association of field bean name
● Validation can be done at startup

13 CDI, Weld and Seam | Dan Allen

JSR-299 theme

Loose coupling...

...with strong typingstrong typing

@Inject
@Observes

@InterceptorBinding

@Qualifier

Event<Order>

@Produces @WishList
List<Product> getWishList()

@UserDatabase EntityManager

14 CDI, Weld and Seam | Dan Allen

Loose coupling

● Decouple server and client
● Using well-defined types and “qualifiers”
● Allows server implementation to vary

● Decouple lifecycle of collaborating components
● Automatic contextual lifecycle management
● Stateful components interact like services

● Decouple orthogonal concerns (AOP)
● Interceptors
● Decorators

● Decouple message producer from message consumer
● Events

15 CDI, Weld and Seam | Dan Allen

StrongStrong typing typing

● Eliminate reliance on string-based names

● Compiler can detect typing errors
● No special authoring tools required for code completion
● Casting virtually eliminated

● Semantic code errors detected at application startup
● Tooling can detect ambiguous dependencies

16 CDI, Weld and Seam | Dan Allen

What can be injected?

● Defined by the specification
● Almost any plain Java class (managed beans)
● EJB session beans
● Objects returned by producer methods or fields
● Java EE resources (e.g., Datasource, UserTransaction)
● Persistence units and persistence contexts
● Web service references
● Remote EJB references

● SPI allows third-party frameworks to introduce additional
injectable objects

● Annotations aligned with JSR-330

17 CDI, Weld and Seam | Dan Allen

CDI bean

● Set of bean types (non-empty)

● Set of qualifiers (non-empty)

● Scope

● Bean EL name (optional)

● Alternatives

● Set of interceptor bindings

● Bean implementation

18 CDI, Weld and Seam | Dan Allen

Bean services with CDI

● @ManagedBean annotation not required (implicit)

● Transparent create/destroy and scoping of instance

● Type-safe resolution at injection or lookup

● Name-based resolution when used in EL expression

● Lifecycle callbacks

● Method interception and decoration

● Event notification

19 CDI, Weld and Seam | Dan Allen

Welcome to CDI (managed bean version)

public class Welcome {
 public String buildPhrase(String city) {
 return "Welcome to " + city + "!";
 }
}

● When is a bean recognized?

/META-INF/beans.xml in same classpath entry

20 CDI, Weld and Seam | Dan Allen

Welcome to CDI (session bean version)

public
@Stateless
class WelcomeBean implements Welcome {
 public String buildPhrase(String city) {
 return "Welcome to " + city + "!";
 }
}

21 CDI, Weld and Seam | Dan Allen

A simple client: field injection

public class Greeter {
 @Inject Welcome welcome;

 public void welcome() {
 System.out.println(
 welcome.buildPhrase("Orlando"));
 }
}

@Default qualifier implied@Default qualifier implied

22 CDI, Weld and Seam | Dan Allen

A simple client: constructor injection

public class Greeter {
 Welcome welcome;

 @Inject
 public Greeter(Welcome welcome) {
 this.welcome = welcome;
 }

 public void welcomeVisitors() {
 System.out.println(
 welcome.buildPhrase("Orlando"));
 }
}

Designates the constructor
CDI should invoke
Designates the constructor
CDI should invoke

23 CDI, Weld and Seam | Dan Allen

A simple client: initializer injection

public class Greeter {
 Welcome welcome;

 @Inject
 void init(Welcome welcome) {
 this.welcome = welcome;
 }

 public void welcomeVisitors() {
 System.out.println(
 welcome.buildPhrase("Orlando"));
 }
}

Designates the initializer
method CDI should invoke
Designates the initializer
method CDI should invoke

24 CDI, Weld and Seam | Dan Allen

Multiple implementations

● Two scenarios:
● Multiple implementations of same interface
● One implementation extends another

public class TranslatingWelcome extends Welcome {

 @Inject GoogleTranslator translator;

 public String buildPhrase(String city) {
 return translator.translate(
 "Welcome to " + city + "!");
 }
}

● Which implementation should be selected for injection?

25 CDI, Weld and Seam | Dan Allen

Qualifier

An annotation used to resolve a implementation

variant of an API at an injection point

26 CDI, Weld and Seam | Dan Allen

Defining a qualifier

● A qualifier is an annotation
public
@Qualifier
@Retention(RUNTIME)
@Target({TYPE, METHOD, FIELD, PARAMETER})
@interface Translating {}

27 CDI, Weld and Seam | Dan Allen

Qualifying an implementation

● Add qualifier annotation to make type more specific
public
@Translating
class TranslatingWelcome extends Welcome {

 @Inject GoogleTranslator translator;

 public String buildPhrase(String city) {
 return translator.translate(
 "Welcome to " + city + "!");
 }
}

● Resolves ambiguity at injection point
● There can never been an ambiguity when resolving!

28 CDI, Weld and Seam | Dan Allen

Using a specific implementation

● Must request to use qualified implementation explicitly
● Otherwise you get unqualified implementation

public class Greeter {
 Welcome welcome;

 @Inject
 void init(@Translating Welcome welcome) {
 this.welcome = welcome
 }

 public void welcomeVisitors() {
 System.out.println(
 welcome.buildPhrase("Mountain View"));
 }
}

No reference to implementation class!No reference to implementation class!

29 CDI, Weld and Seam | Dan Allen

Alternative bean

● Swap replacement implementation per deployment

● Replaces bean and its producer methods and fields

● Disabled by default
● Must be activated in /META-INF/beans.xml

Put simply: an override

30 CDI, Weld and Seam | Dan Allen

Defining an alternative

public
@Alternative
@Specializes
class TranslatingWelcome extends Welcome {

 @Inject GoogleTranslator translator;

 public String buildPhrase(String city) {
 return translator.translate(
 "Welcome to " + city + "!");
 }
}

31 CDI, Weld and Seam | Dan Allen

Substituting the alternative

● Implementation activated using deployment-specific
/META-INF/beans.xml resource

<beans>
 <alternatives>
 <class>com.acme.TranslatingWelcome</class>
 </alternatives>
</beans>

● Could also enable alternative by introducing and
activating an intermediate annotation

32 CDI, Weld and Seam | Dan Allen

Assigning a bean name

public
@Named("greeter")
class Greeter {
 Welcome welcome;

 @Inject
 public Greeter(Welcome welcome) {
 this.welcome = welcome;
 }

 public void welcomeVisitors() {
 System.out.println(
 welcome.buildPhrase("Orlando"));
 }
}

Same as default name when
no annotation value specified
Same as default name when
no annotation value specified

33 CDI, Weld and Seam | Dan Allen

Assigning a bean name

public
@Named
class Greeter {
 Welcome welcome;

 @Inject
 public Greeter(Welcome welcome) {
 this.welcome = welcome;
 }

 public void welcomeVisitors() {
 System.out.println(
 welcome.buildPhrase("Orlando"));
 }
}

34 CDI, Weld and Seam | Dan Allen

Collapsing layers

● Use the bean directly in the JSF view
<h:form>
 <h:commandButton value="Welcome visitors"
 action="#{greeter.welcomeVisitors}"/>
</h:form>

● But we still need the bean to be stored in a scope

35 CDI, Weld and Seam | Dan Allen

A stateful bean

● Declare bean to be saved for duration of request
public
@RequestScoped
@Named("greeter")
class Greeter {
 Welcome welcome;
 private String city; // getter and setter hidden

 @Inject public Greeter(Welcome welcome) {
 this.welcome = welcome
 }

 public void welcomeVisitors() {
 System.out.println(welcome.buildPhrase(city));
 }
}

36 CDI, Weld and Seam | Dan Allen

Collapsing layers with state management

● Now it’s possible for bean to hold state
<h:form>
 <h:inputText value="#{greeter.city}"/>
 <h:commandButton value="Welcome visitors"
 action="#{greeter.welcomeVisitors}"/>
</h:form>

● Satisfies initial goal of integrating JSF and EJB
● Except in this case, it extends to plain managed beans

37 CDI, Weld and Seam | Dan Allen

Scope types and contexts

● Absence of scope - @Dependent
● Bound to lifecycle of bean holding reference to it

● Servlet scopes
● @ApplicationScoped
● @RequestScoped
● @SessionScoped

● JSF conversation scope - @ConversationScoped

● Custom scopes
● Define scope type annotation (i.e., @FlashScoped)
● Implement context API

38 CDI, Weld and Seam | Dan Allen

Scope transparency

● Scopes are not visible to client
● No coupling between scope and use of type
● Scoped beans are proxied for thread safety

39 CDI, Weld and Seam | Dan Allen

Scoping a collaborating bean

public
@SessionScoped
class Profile {
 private Identity identity;

 public void register() {
 identity = ...;
 }

 public Identity getIdentity() {
 return identity;
 }
}

40 CDI, Weld and Seam | Dan Allen

Collaboration between stateful beans

public
@Named @RequestScoped
class Greeter {
 Welcome welcome;
 Profile profile;
 private String city;

 @Inject
 public Greeter(Welcome welcome, Profile profile) {
 this.welcome = welcome;
 this.profile = profile;
 }
 ...

 public void welcomeVisitors() {
 System.out.println(welcome.buildPhrase(
 profile.getIdentity(), city));
 }
}

No awareness of scopeNo awareness of scope

41 CDI, Weld and Seam | Dan Allen

Conversation context

● Request <= Conversation << Session

●

● Boundaries demarcated by application

● Optimistic transaction
● Conversation-scoped persistence context
● No fear of exceptions on lazy fetch operations

42 CDI, Weld and Seam | Dan Allen

Controlling the conversation

public
@ConversationScoped
class BookingAgent {

 @Inject @BookingDatabase EntityManager em;
 @Inject Conversation conversation;

 private Hotel selected;
 private Booking booking;

 public void select(Hotel h) {
 selected = em.find(Hotel.class, h.getId());
 conversation.begin();
 }

 ...

43 CDI, Weld and Seam | Dan Allen

Controlling the conversation

 ...

 public boolean confirm() {
 if (!isValid()) {
 return false;
 }

 em.persist(booking);
 conversation.end();
 return true;
 }
}

44 CDI, Weld and Seam | Dan Allen

Producer method

A method whose return value is an injectable object

Used for:
● Types which you cannot modify
● Runtime selection of a bean instance
● When you need to do extra and/or conditional setup of a

bean instance

● Roughly equivalent to Seam’s @Factory annotation

45 CDI, Weld and Seam | Dan Allen

Producer method examples

@Produces
public PaymentProcessor getPaymentProcessor(
 @Synchronous PaymentProcessor sync,
 @Asynchronous PaymentProcessor async) {
 return isSynchronous() ? sync : async;
}

@Produces @SessionScoped @WishList
public List<Product> getWishList() { ... }

46 CDI, Weld and Seam | Dan Allen

Bridging Java EE resources

● Use producer field to expose Java EE resource
public
@Stateless
class UserEntityManagerFactory {
 @Produces @UserRepo
 @PersistenceUnit(unitName = "userPU")
 EntityManagerFactory emf;
}

public
@Stateless
class PricesTopic {
 @Produces @Prices
 @Resource(name = "java:global/env/jms/Prices")
 Topic pricesTopic;
}

Java EE 6 global JNDI nameJava EE 6 global JNDI name

Java EE resource annotationsJava EE resource annotations

47 CDI, Weld and Seam | Dan Allen

Injecting resource in type-safe way

● String-based resource names are hidden
public class UserManager {
 @Inject @UserRepo EntityManagerFactory emf;
 ...
}

public class StockDisplay {
 @Inject @Prices Topic pricesTopic;
 ...
}

48 CDI, Weld and Seam | Dan Allen

Promoting state

● Producer methods can promote state as injectable object
public
@RequestScoped
class Profile {
 private Identity identity;

 public void register() {
 identity = ...;
 }

 @Produces @SessionScoped
 public Identity getIdentity() {
 return identity;
 }
}

Could also declare
qualifiers and/or EL name
Could also declare
qualifiers and/or EL name

49 CDI, Weld and Seam | Dan Allen

Using promoted state

public
@RequestScoped @Named
class Greeter {
 Welcome welcome;
 Identity identity;
 private String city;

 @Inject
 public Greeter(Welcome welcome, Identity ident) {
 this.welcome = welcome;
 this.identity = ident;
 }
 ...

 public void welcomeVisitors() {
 System.out.println(
 welcome.buildPhrase(identity, city));
 }
}

No awareness of scopeNo awareness of scope

50 CDI, Weld and Seam | Dan Allen

Rethinking interceptors

● Interceptors handle orthogonal concerns

● Java EE 5 interceptors bound directly to component
● @Interceptors annotation on bean type

● What’s the problem?
● Shouldn’t be coupled to implementation

● Requires level of indirection

● Should be deployment-specific
● Tests vs production
● Opt-in best strategy for enabling

● Ordering should be defined centrally

51 CDI, Weld and Seam | Dan Allen

Interceptor wiring in JSR-299 (1)

● Define an interceptor binding type
public
@InterceptorBinding
@Retention(RUNTIME)
@Target({TYPE, METHOD})
@interface Secure {}

52 CDI, Weld and Seam | Dan Allen

Interceptor wiring in JSR-299 (2)

● Marking the interceptor implementation
public
@Secure
@Interceptor
class SecurityInterceptor {

 @AroundInvoke
 public Object aroundInvoke(InvocationContext ctx)
 throws Exception {
 // ...enforce security...
 ctx.proceed();
 }

}

53 CDI, Weld and Seam | Dan Allen

Interceptor wiring in JSR-299 (3)

● Applying interceptor to class with proper semantics
public
@Secure
class AccountManager {

 public boolean transfer(Account a, Account b) {
 ...
 }

}

54 CDI, Weld and Seam | Dan Allen

Interceptor wiring in JSR-299 (4)

● Applying interceptor to method with proper semantics
public class AccountManager {

 public
 @Secure
 boolean transfer(Account a, Account b) {
 ...
 }

}

55 CDI, Weld and Seam | Dan Allen

Multiple interceptors

● Application developer only worries about semantics
public
@Transactional
class AccountManager {

 public
 @Secure
 boolean transfer(Account a, Account b) {
 ...
 }

}

56 CDI, Weld and Seam | Dan Allen

Enabling and ordering interceptors

● Interceptors referenced by binding type

● Specify binding type in /META-INF/beans.xml to activate
<beans>
 <interceptors>
 <class>com.acme.SecurityInterceptor</class>
 <class>com.acme.TransactionInterceptor</class>
 </interceptors>
</beans>

Interceptors applied in order listedInterceptors applied in order listed

57 CDI, Weld and Seam | Dan Allen

Composite interceptor bindings

● Interceptor binding types can be meta-annotations
public
@Secure
@Transactional
@InterceptorBinding
@Retention(RUNTIME)
@Target(TYPE)
@interface BusinessOperation {}

Order does not matterOrder does not matter

58 CDI, Weld and Seam | Dan Allen

Multiple interceptors (but you won’t know it)

● Interceptors inherited from composite binding types
public
@BusinessOperation
class AccountManager {

 public boolean transfer(Account a, Account b) {
 ...
 }

}

59 CDI, Weld and Seam | Dan Allen

Wrap up annotations using stereotypes

● Common architectural patterns – recurring roles

● A stereotype packages:
● A default scope
● A set of interceptor bindings
● The ability to that beans are named
● The ability to specify that beans are alternatives

60 CDI, Weld and Seam | Dan Allen

Annotation jam

● Without stereotypes, annotations pile up
public
@Secure
@Transactional
@RequestScoped
@Named
class AccountManager {

 public boolean transfer(Account a, Account b) {
 ...
 }

}

61 CDI, Weld and Seam | Dan Allen

Defining a stereotype

● Stereotypes are annotations that group annotations
public
@Secure
@Transactional
@RequestScoped
@Named
@Stereotype
@Retention(RUNTIME)
@Target(TYPE)
@interface BusinessComponent {}

62 CDI, Weld and Seam | Dan Allen

Using a stereotype

● Stereotypes give a clear picture, keep things simple
public
@BusinessComponent
class AccountManager {

 public boolean transfer(Account a, Account b) {
 ...
 }

}

63 CDI, Weld and Seam | Dan Allen

Decorators

● Intercept invocations for a particular Java interface

● Aware of semantics

● Complement interceptors

● Enabled in same way as interceptors

64 CDI, Weld and Seam | Dan Allen

Decorator example

public
@Decorator
abstract class LargeTxDecorator implements Account {
 @Inject @Delegate @Any Account account;
 @PersistenceContext EntityManager em;

 public void withdraw(BigDecimal amount) {
 account.withdraw(amount);
 if (amount.compareTo(LARGE_AMOUNT) > 0) {
 em.persist(new LoggedWithdrawl(amount));
 }
 }

}

65 CDI, Weld and Seam | Dan Allen

Events

● Completely decouples action and reactions

● Observers can use selectors to tune which event
notifications are received

● Events can be observed immediately, at end of
transaction or asynchronously

66 CDI, Weld and Seam | Dan Allen

Firing an event

public class GroundController {
 @Inject @Landing Event<Flight> flightLanding;

 public void clearForLanding(String flightNum) {
 flightLanding.fire(new Flight(flightNum));
 }
}

Event instance with
type-safe payload
Event instance with
type-safe payload

67 CDI, Weld and Seam | Dan Allen

An event observer

public class GateServices {
 public void onIncomingFlight(
 @Observes @Landing Flight flight,
 Greeter greeter,
 CateringService cateringService) {
 Gate gate = ...;
 flight.setGate(gate);
 cateringService.dispatch(gate);
 greeter.welcomeVisitors();
 }
}

Takes event API type with
additional binding type
Takes event API type with
additional binding type

Additional parameters are
injected by the container
Additional parameters are
injected by the container

68 CDI, Weld and Seam | Dan Allen

Weld

● JSR-299 reference implementation

● Developed under the Seam project umbrella

● Version 1.0.0 available, including Maven archetypes!

● Bundled in JBoss AS 6 and GlassFish V3

● Runs on Tomcat, Jetty and Java SE

WeldWeld

CoreCore

OSGiOSGi

TCK
execution

TCK
execution

Integrator
SPI

Integrator
SPI

ExtensionsExtensions

ServletServlet

Java SEJava SE
CDI TCKCDI TCK

TCKTCK

69 CDI, Weld and Seam | Dan Allen

Seam’s mission statement

To provide a fully integrated development

platform for building rich Internet applications
based upon the Java EE environment

70 CDI, Weld and Seam | Dan Allen

Seam is our future

“The future for all of our projects and platform is Seam.”

“[Developers] won't have to worry about learning a new
component model when they move between platforms.”

- Mark Little, JBoss CTO

http://blogs.jboss.org/blog/mlittle/2009/11/11/The_future_of_component_models.txt

71 CDI, Weld and Seam | Dan Allen

Seam framework stack

● CDI foundation

● Enhanced, declarative security

● Support for multiple view layers (JSF 2, Wicket, Flex)

● JavaScript remoting (a la DWR)

● RESTeasy integration

● Bridges to Seam 2, Spring and Guice

● Email, graphics, PDF and XLS

● Pageflows and business processes

● JBoss Tools
http://in.relation.to/Bloggers/HowToStartLearningJavaEE6

72 CDI, Weld and Seam | Dan Allen

Ecosystem architecture

Seam FrameworkSeam Framework

Seam
Security
Seam

Security Seam MailSeam Mail Drools 5
support

Drools 5
support

RESTEasy
integration

RESTEasy
integration

Wicket
support
Wicket
support

CDI 1.0

WeldWeld

CoreCore CDI TCKCDI TCK

OSGiOSGi

Tomcat/Jetty

JBoss AS > 5.2

GlassFish V3

IntegrationIntegration

ServletServlet

IntegrationIntegration

OpenOpen
Web BeansWeb Beans

73 CDI, Weld and Seam | Dan Allen

Seam 3: Key themes

● Modularity
● Seam à la carte

● Portability
● Run on any CDI implementation

● Full stack
● Similar to Eclipse’s coordinated release

74 CDI, Weld and Seam | Dan Allen

Drawing the line

● Unportable extension (UE)
● Integrates with proprietary SPIs in Weld

● Portable extension (PE) - Weld
● Simple or general purpose
● Doesn’t pull in extra dependencies

● Portable extension (PE) - Seam
● Everything else

75 CDI, Weld and Seam | Dan Allen

End-to-end testing

● SeamTest modularized

● ShrinkWrap
● Declarative creation of archives, made simple

JavaArchive archive =
 Archives.create("archive.jar", JavaArchive.class)
 .addClasses(MyClass.class,MyOtherClass.class)
 .addResource("mystuff.properties");

● Arquillian
● Pluggable unit test
● Standalone and in-container POJO tests
● @RunWith(Arquillian.class)

76 CDI, Weld and Seam | Dan Allen

Summary

● JSR-299 provides a set of services for Java EE
● Satisfies original goal to bridge JSF and EJB
● Offers loose coupling with strong typingstrong typing
● Catalyzed the managed bean specification

● Other problems needed to be solved
● Robust dependency injection and context model
● Event notification facility, furthering the loose coupling
● Extensive SPI for third-parties to integrate with Java EE

● Weld: JSR-299 Reference Implementation

● Seam: Portable extensions for Java EE

Q & A

Dan Allen
Senior Software Engineer
JBoss, by Red Hat

http://in.relation.to
http://seamframework.org

